Growth and Development of Sapphire Crystal for LED Applications

نویسندگان

  • Huili Tang
  • Hongjun Li
  • Jun Xu
چکیده

LEDs (Light emitting diodes) are considered as the most promising green lighting sources in 21st Century for the advantages in high brightness, long lifetime (more than 50,000 hours), low energy consumption, short corresponding time, good shock resistance, non-toxic, recy‐ clable, safety. LEDs have already been extensively used in outdoor displays, traffic lights, high-performance back light units in liquid-crystal displays, general lighting. Strategies Un‐ limited Company predicted that the compound annual growth rate (CAGR) of the LED mar‐ ket would increase to 30.6%, up to $20.2 billion in 2014. It is obvious that incandescent bulbs and fluorescent lamps will be replaced by LEDs, which could alleviate the increasingly seri‐ ous global energy crisis. Therefore, the development of semiconductor lighting industry is of great significance. Many countries have already launched National Semiconductor Light‐ ing Plan, investing heavily in researching and developing the LEDs industry. In 1998, Japan made a “Light for the 21st Century” plan with the budget of 6 billion yen. In July 2000, Eu‐ ropean Union implemented “Rainbow project bring color to LEDs” plan, setting up ECCR and promoting the application of white light LED through the EU BRITE/ EURAM-3 pro‐ gram. U.S. Department of Energy established “National research program on semiconductor lighting” plan. It is expected that in 2025, the use of solid state lighting will reduce half of the lighting electricity consumption and save $35 billion per year. In June 2003, the Chinese Ministry of Science and Technology launched an “National Semiconductor Lighting Project” in support of the “863” Project. In 2009, ministry of Science and Technology started “Ten thousand LED lights in ten cities” semiconductor lighting demonstration program. It is ex‐ pected that in 2015, semiconductor lighting will occupy 30% of the domestic general lighting market.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Gallium Nitride Substrates

Prominent progress has been made in nitride semiconductor since high bright blue LED has developed in 1993. It has also expanded to an industry after applied to white LED. These LEDs are produced by the epitaxial growth of nitride semiconductor layers on sapphire (a Al2O3) substrate. On the other hand, recording density in optical disks has increased from CD in 1980s to DVD in latter 1990s. Las...

متن کامل

Layer matching epitaxy of NiO thin films on atomically stepped sapphire (0001) substrates

Thin-film epitaxy is critical for investigating the original properties of materials. To obtain epitaxial films, careful consideration of the external conditions, i.e. single-crystal substrate, temperature, deposition pressure and fabrication method, is significantly important. In particular, selection of the single-crystal substrate is the first step towards fabrication of a high-quality film....

متن کامل

The Resurgence of III-N Materials Development: AlInN HEMTs and GaN-on-Si

Heterostructure devices based on the AlInN material system have demonstrated unprecedented high frequency performance but are still limited by materials issues. Likewise, improved crystal growth schemes are envisioned as a key component in the realization of GaN-on-Si high voltage devices for power electronics applications. This work presents materials optimization results from MOCVD growth of ...

متن کامل

MOVPE Growth of Semipolar GaN on Patterned Sapphire Wafers: Influence of Substrate Miscut

We describe epitaxial methods for two different semipolar GaN orientations on patterned sapphire substrates: With (101̄2) (r-plane) sapphire substrates we achieve planar (112̄2) GaN layers with smooth surfaces on a large scale. In the case of (112̄3) (n-plane) patterned wafers the growth of (101̄1) GaN is possible. We optimized the growth conditions for (112̄2) GaN (especially the growth temperature...

متن کامل

Fabrication of three-dimensional autocloned photonic crystal on sapphire substrate.

We applied the laser interference lithography method to form a patterned sapphire substrate (PSS). A three-dimensional photonic crystal was formed by autocloning the PSS with alternate Ta2O5/SiO2 coatings. A high total integrated reflectance (TIR) band was obtained around the 410 to 470 nm wavelength range that matched the emission spectrum of the gallium nitride (GaN) light-emitting diode (LED...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013